Polarized Raman and Infrared Spectra of Tetramethyland 2,6-Dimethylpyrazines

Yoshimi Ishibashi, Fumiko Arakawa, Hiroko Shimada,*
and Ryoichi Shimada†

Department of Chemistry, Faculty of Science, Fukuoka University,
Nanakuma, Jonan-ku, Fukuoka 814

† Department of Chemistry, Faculty of Science, Kyushu University 33,
Hakozaki, Higashi-ku, Fukuoka 812

(Received September 27, 1982)

The polarized Raman and infrared spectra of tetramethyl- and 2,6-dimethylpyrazines were studied. Relative intensities of the non-totally symmetric Raman bands for the tetramethylpyrazine crystal were calculated assuming the oriented gas model. Assignments of the fundamental vibrations for tetramethyl- and 2,6-dimethylpyrazines were made through the expected and observed polarization behaviors of the Raman and infrared bands and also through the normal coordinate calculation.

Although the Raman and infrared spectra of pyrazine were studied by many workers,1-7) only a few investigations were made on the vibrational spectra of methyl-substituted pyrazines. Oertel and Myhre8) and Bus et al.9) discussed qualitative frequency shifts of the Raman and infrared bands caused by methyl substitution. Watanabe et al.10) studied very recently the normal vibrations of 2-methylpyrazine based on the polarization behaviors of the Raman and infrared bands and on the normal coordinate calculation. Niimori et al.,11) Lim et al.,12) and Hirota et al.13) investigated the natures of the lowest triplet states of tetramethyl- and 2,6-dimethylpyrazines through the kinetic and vibrational analyses of the phosphorescence emissions. They made tentative assignments of the normal vibrations without studies of the vibrational

In this work, the Raman and infrared spectra of tetramethyl- and 2,6-dimethylpyrazines were investigated and assignments of the normal vibrations were made.

Experimental

Material. The samples, tetramethyl- and 2,6-dimethylpyrazines, obtained from Aldrich Chemical Co. were purified by zone-refining of about 100 passages followed by sublimation under reduced pressure.

The polarization behavior of the Optical Measurement. Raman spectrum was observed in molten and single crystal phases with a JEOL 400 T Laser Raman Spectrophotometer. The sample was excited with the 514.5 nm line from an Ar+ ion laser. A well-grown single crystal of tetramethylpyrazine obtained by the Bridgman method was cut along the cleavage ab plane, and the a and b crystal axes were determined by observation of the birefringence. Then the crystal was cut along the ac and bc planes and a cubic sample of about (7 mm)³ was obtained. As tetramethylpyrazine sublimates very quickly, Canada balsam was spread over the whole surface of the crystal sample. The method of measurement of the polarized Raman spectrum was exactly the same as that described previously.¹⁴⁾ Since the crystal structure of 2,6-dimethylpyrazine has not been studied yet and the crystal melts by irradiation of the laser beam at room temperature, the polarized Raman spectrum was measured in the following way. The signle crystal grown in a glass tube of about 3 mm in diameter by the Bridgman

method was held in a capillary cell system of JEOL Model RS-VTC 41 in such a way that the direction of the crystal growth orients parallel to the polarization direction of the excitation laser beam. The temperature of the cell was kept at 0 °C. The Raman scattering was observed at right angles with the excitation light beam. The Raman spectrum polarized parallel to the crystal growth direction is referred to as // spectrum and the spectrum polarized perpendicular to as ⊥ spectrum. The polarized Raman spectrum was measured for two crystal orientations. In the first orientation a sharp band at 1534 cm⁻¹, which is strong and depolarized in molten phase, appears strongly in the // spectrum and in the second orientation the 1534 cm⁻¹ band appears strongly in the ⊥ spectrum.

The infrared spectrum was observed in single crystal, liquid, vapor, and $\mathrm{CCl_4}$ or $\mathrm{CS_2}$ solution with a Hitachi Infrared Spectrophotometer Model 345 over the range of 4000 to 200 cm⁻¹. The single crystal was prepared in the following way. The sample was melted on a KRS-5 plate and covered with another hot KRS-5 plate. Then the two plates were put on a heated brass block and allowed to cool gradually. The crystal formed between two plates was held between two sheets of polaroid films whose polarization directions were set at right angles to each other and a single crystal portion was selected. The rest portion of the crystal was masked with a sheet of black paper. The polarized infrared spectrum was measured with the incident lights polarized parallel and perpendicular to the crystal growth direction. The first spectrum is referred to as // and the second to as \perp spectrum.

Normal Coordinate Calculation

A normal coordinate calculation was performed through the standard *GF* matrix method with a FACOM M-200 computer at the Computer Center of Kyushu University. The structural parameter of the tetramethylpyrazine molecule was taken from the data given by Braam *et al.*¹⁵⁾ Since the molecular structure of 2,6-dimethylpyrazine has not been studied yet, the structural parameters of the pyrazine ring and methyl group were assumed to be the same as the data given by Wheatley¹⁶⁾ and by Keidel and Bauer,¹⁷⁾ respectively.

The **F** matrix elements for the in-plane vibrations were evaluated with the potential field of an improved modification of the Urey-Bradley force field.^{14,18)} The potential field is given by

Fig. 1. Symbols for the atoms and internal coordinates.

$$egin{aligned} V &= V_{ ext{UB}} +
ho [\overset{6}{\Sigma} (\Delta R, \ \Delta R)_o - \overset{6}{\Sigma} (\Delta R, \ \Delta R)_m \ &+ \overset{3}{\Sigma} (\Delta R, \ \Delta R)_p] + \Sigma k^o (\Delta r, \ \Delta r) \ &+ \Sigma k^m (\Delta r, \ \Delta r) + \Sigma h^m (\Delta R, \ \Delta lpha) \ &+ \Sigma f^o (\Delta lpha, \ \Delta lpha), \end{aligned}$$

where the symbols such as $V_{\rm UB}$ are the same as those used in the previous paper.^{14,18)} The symbols given for atoms and internal coordinates are shown in Fig. 1. For the out-of-plane vibrations the valence force field and ϕ type torsional coordinates were used. The notations of the force constants Q, q, P, p, and t are the same as those given by Whiffen.¹⁹⁾ In the case of the out-of-plane vibration, R and r' refer to the torsional coordinates constructing the ring and side bond, respectively. Procedure of the calculation was exactly the same as described in the previous paper.^{14,18)}

Calculation of Derived Polarizability Tensors

Tetramethylpyrazine crystallizes in the orthorhombic space group D_{2h}^{15} with four molecules in the unit cell, each molecule being located at the site of symmetry C_i . The projection of the crystal structure on the ab plane is shown in Fig. 2. No factor group splitting was observed for the bands due to molecular vibrations and thus, the relationship between the derived polarizability tensors for the free molecule and crystal was derived on the basis of the simple oriented gas model. Evaluation of the matrix elements of the derived polarizability tensors of tetramethylpyrazine was made following the procedure applied for the naphthalene and anthracene crystals by Ito *et al.*²¹⁾ The derived polarizability tensor of a free molecule i with respect to the crystal-fixed coordinates is given by

$$\alpha'_{\mathbf{m}_{i}}(\mathbf{Q}_{\lambda}) = \mathbf{T}_{i} \, \alpha'_{\mathbf{m}}(\mathbf{Q}_{\lambda}) \, \tilde{\mathbf{T}}_{i},$$

$$i = 1,2,3,4,$$

where $\alpha_m'(Q_\lambda)$ is the derived polarizability tensor of a free molecule with respect to a normal vibration Q_λ , and T the transformation matrix between the molecule-fixed u, v, w and crystal-fixed a, b, c coordinates. Using the assumption of the oriented gas model and symmetry coordinates S_{Ag} , S_{B1g} , S_{B2g} , and S_{B3g} appropriate to the four molecule unit cell, the derived polarizability tensors with respect to the unit

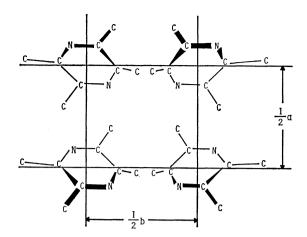


Fig. 2. Projection of the tetramethylpyrazine crystal on the ab plane.

cell vibrations are given for each symmetry species by

$$lpha_{f u}'(S_{{
m Ag}}) = egin{array}{ccccc} A_{{
m aa}} & 0 & 0 & 0 \ 0 & A_{{
m bb}} & 0 \ 0 & 0 & A_{{
m ce}} \end{array},$$
 $lpha_{f u}'(S_{{
m B}_{1g}}) = egin{array}{ccccc} 0 & A_{{
m ab}} & 0 & 0 \ A_{{
m ba}} & 0 & 0 \ 0 & 0 & 0 \end{array},$ $lpha_{f u}'(S_{{
m B}_{2g}}) = egin{array}{ccccc} 0 & 0 & A_{{
m ac}} \ 0 & 0 & 0 \ A_{{
m ca}} & 0 & 0 \end{array},$ $lpha_{f u}'(S_{{
m B}_{3g}}) = egin{array}{ccccc} 0 & 0 & A_{{
m be}} \ 0 & 0 & A_{{
m be}} \ 0 & A_{{
m cb}} & 0 \end{array},$

where A's are functions of the direction cosines and the elements of the derived polarizability tensors of a free molecule.

According to the character table and selection rules for the D_{2h} molecule, we derived simple analytical expressions of A's for the vibrations belonging to different species of the molecule. These results are given in Table 1.

Results and Discussion

The force constants finally obtained after several iterative calculations for the in-plane and out-of-plane vibrations of tetramethyl- and 2,6-dimethylpyrazines are given in Table 2. The calculated vibrational frequencies and modes are given in Table 3, together with the experimental results. The molecular structures of tetramethyl- and 2,6-dimethylpyrazines were assumed to belong to the point groups D_{2h} and C_{2v} , respectively. The u axis is taken perpendicular to the molecular plane and the v and w axes in the plane with the w axis passing through the nitrogen atoms. The moments of inertia calculated from the molecular structures and the expected rotational envelopes for the infrared bands in vapor phase are given in Table The depolarization measurements of the Raman spectra observed in molten phase and polarized Raman

Table 1. Elements of the derived polarizability tensors of tetramethylpyrazine

	$\mathbf{b_{1g}}$	$\mathbf{b_{2g}}$	$\mathrm{b_{3g}}$
A_{aa}	$2a_{\mathrm{u}}^{\dagger}a_{\mathrm{v}}lpha_{\mathrm{u}\mathrm{v}}^{\prime}$	$2a_{\mathbf{u}}a_{\mathbf{w}}\alpha'_{\mathbf{u}\mathbf{w}}$	$2a_{\mathbf{v}}a_{\mathbf{w}}\alpha'_{\mathbf{v}\mathbf{w}}$
$A_{ m bb}$	$2\mathbf{b_u}\mathbf{b_v}\boldsymbol{lpha_{uv}}$	$2\mathbf{b_ub_w}\alpha'_{\mathbf{uw}}$	$2\mathbf{b_v}\mathbf{b_w}\alpha'_{\mathbf{v}\mathbf{w}}$
$A_{ m cc}$	$2c_{\mathbf{u}}c_{\mathbf{v}}\alpha'_{\mathbf{u}\mathbf{v}}$	$2\mathbf{c_u}\mathbf{c_w}\alpha'_{\mathbf{u}\mathbf{w}}$	$2\mathbf{c}_{\mathbf{v}}\mathbf{c}_{\mathbf{w}}\boldsymbol{\alpha}_{\mathbf{v}\mathbf{w}}'$
$A_{ m ab}$	$(a_{\mathbf{u}}\mathbf{b_{\mathbf{v}}} + a_{\mathbf{v}}\mathbf{b_{\mathbf{u}}})\alpha'_{\mathbf{u}\mathbf{v}}$	$(a_{\mathbf{u}}b_{\mathbf{w}}+a_{\mathbf{w}}b_{\mathbf{u}})\alpha'_{\mathbf{u}\mathbf{w}}$	$(a_{\mathbf{v}}b_{\mathbf{w}}+a_{\mathbf{w}}b_{\mathbf{v}})\alpha'_{\mathbf{v}\mathbf{w}}$
$A_{ m ac}$	$(a_{\mathbf{u}}\mathbf{c}_{\mathbf{v}} + a_{\mathbf{v}}\mathbf{c}_{\mathbf{u}})\alpha'_{\mathbf{u}\mathbf{v}}$	$(\mathbf{a_u}\mathbf{c_w} + \mathbf{a_w}\mathbf{c_u})\boldsymbol{\alpha_{uw}}$	$(a_{\mathbf{v}}c_{\mathbf{w}}+a_{\mathbf{w}}c_{\mathbf{v}})\alpha'_{\mathbf{v}\mathbf{w}}$
$A_{ m bc}$	$(\mathbf{b_u}\mathbf{c_v} + \mathbf{b_v}\mathbf{c_u})\boldsymbol{\alpha_u'}_{\mathbf{v}}$	$(b_u c_w + b_w c_u) \alpha'_{uw}$	$(b_{\mathbf{v}}c_{\mathbf{w}}+b_{\mathbf{w}}c_{\mathbf{v}})\alpha'_{\mathbf{v}\mathbf{w}}$
	$a_{\mathbf{g}}$		
A_{aa}	$a_{\mathrm{u}}^{2}\alpha_{\mathrm{u}}^{\prime}+a_{\mathrm{v}}^{2}\alpha_{\mathrm{v}}^{\prime}+a_{\mathrm{w}}^{2}\alpha_{\mathrm{w}}^{\prime}$		
$A_{ m bb}$	$\mathbf{b_{u}^{2}\alpha_{u}^{\prime}} + \mathbf{b_{v}^{2}\alpha_{vv}^{\prime}} + \mathbf{b_{w}^{2}\alpha_{ww}^{\prime}}$		
A_{cc}	$\mathrm{c_u^2}lpha_{\mathrm{u}\mathrm{u}}^\prime\!+\!\mathrm{c_v^2}lpha_{\mathrm{v}\mathrm{v}}^\prime\!+\!\mathrm{c_w^2}lpha_{\mathrm{w}\mathrm{w}}^\prime$		
$A_{ m ab}$	$a_{\mathbf{u}}b_{\mathbf{u}}\alpha'_{\mathbf{u}\mathbf{u}}+a_{\mathbf{v}}b_{\mathbf{v}}\alpha'_{\mathbf{v}\mathbf{v}}+a_{\mathbf{w}}b_{\mathbf{w}}\alpha'$, w w	
$A_{ m ac}$	$a_{\mathbf{u}}\mathbf{c}_{\mathbf{u}}\boldsymbol{\alpha}_{\mathbf{u}\mathbf{u}}' + a_{\mathbf{v}}\mathbf{c}_{\mathbf{v}}\boldsymbol{\alpha}_{\mathbf{v}\mathbf{v}}' + a_{\mathbf{w}}\mathbf{c}_{\mathbf{w}}\boldsymbol{\alpha}_{\mathbf{w}}'$	7 W	
$A_{ m bc}$	$b_{\mathbf{u}}c_{\mathbf{u}}\alpha'_{\mathbf{u}\mathbf{u}}+b_{\mathbf{v}}c_{\mathbf{v}}\alpha'_{\mathbf{v}\mathbf{v}}+b_{\mathbf{w}}c_{\mathbf{w}}\alpha'_{\mathbf{v}}$	w w	

[†] au, av,···c and w axes, respectively.

Table 2. Force constants for the in-plane and out-of-plane vibrations of tetramethyl- and 2,6-dimethylpyrazines

K_{N-C}	5.6 J/dm ²	$H_{ m N-C-H}$	0.24 J/dm ²	ρ	0.24 J/dm ²	$P_{ m H}$	0.31 aJ/rad^2
$K_{\mathrm{N-C'}}$	5.4	$H_{\mathrm{C'-C''-H'}}$	0.29	$k_{r',r'}^o$	0.20	$q_{R,R}^o$	-0.01
$K_{\mathrm{C-C'}}$	5.0	$H_{\mathrm{H'-C''-H'}}$	0.53	$k_{r',r}^o$	0.07	$q_{r',r'}^o$	0.03
$K_{\mathrm{C'-C''}}$	3.0	$F_{\mathrm{C'}{\mathrm{C'}}}$	0.90	$k_{r',r'}^m$	0.20	$q_{R,R}^m$	-0.01
$K_{\mathrm{C-H}}$	4.5	$F_{ m N\cdots C}$	0.55	k_{r}^{m} , $_{r}$	0.06	$p^o_{\mathrm{C}'',\mathrm{C}''}$	0.05
$K_{\mathrm{C''-H'}}$	4.74	$F_{\mathrm{C'}\mathrm{N}}$	0.70	$h^m_{R,\alpha}$	-0.12 pJ/dm rad	$p_{\mathrm{C}'',\mathrm{H}}^o$	0.055
$H_{\mathrm{C'-N-C'}}$	0.30	$F_{ m C\cdots C}$	0.90	$f^o_{\alpha,\alpha}$	0.10 aJ/rad^2	$p^m_{\mathrm{C''},\mathrm{C''}}$	-0.05
$H_{ m N-C'-C}$	0.55	$F_{ m N\cdots C''}$	0.90	$Q_{\rm N-C'}$	0.16	$p_{\mathrm{H},\mathrm{H}}^{m}$	-0.055
$H_{\mathrm{C-N-C}}$	0.30	$F_{\mathrm{C}\cdots\mathrm{C''}}$	0.48	$Q_{\mathrm{C'-C'}}$	0.22	$t_{ m R,C''}^o$	-0.04
$H_{ m N-C-C'}$	0.45	$F_{\mathrm{C'}{\mathrm{H}}}$	0.50	$Q_{\rm C-C'}$	0.22	$t_{\mathrm{R,C''}}^m$	-0.05
$H_{ m N-C'-C''}$	0.25	$F_{ m N\cdots H}$	0.41	Q_{N-C}	0.20	$t_{\mathrm{R},\mathrm{H}}^o$	-0.02
$H_{\mathrm{C-C'-C''}}$	0.22	$F_{\mathrm{C'}{\mathrm{H'}}}$	0.20	$Q_{\mathrm{C'-C''}}$	0.11	$t_{\mathrm{R,H}}^{m}$	-0.02
$H_{\mathrm{C'-C-H}}$	0.25	$F_{\mathrm{H'}\mathrm{H'}}$	-0.20	$P_{\mathrm{C''}}$	0.28		

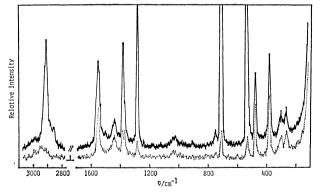


Fig. 3. Depolarization measurement of the Raman spectrum of tetramethylpyrazine.

spectra observed in single crystals of tetramethyl- and 2,6-dimethylpyrazines are shown in Figs. 3, 4, 5, and 6, respectively. The polarized Raman spectrum of tetramethylpyrazine was denoted with two symbols such as ab as used in the previous paper.¹⁴⁾ The first letter refers to the direction of polarization of the excitation light and the second to that of the scattering light.

The polarized Raman spectra of 2,6-dimethylpyrazine observed for the two different orientations of the

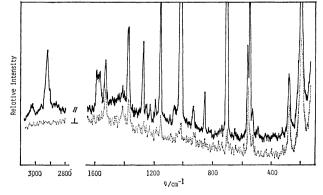


Fig. 4. Depolarization measurement of the Raman spectrum of 2,6-dimethylpyrazine.

crystal described in the experimental section are shown in Figs. 6 (A) and (B). We denote type α for the band whose intensity is stronger in the // spectrum than in the \perp spectrum and type β for the band whose intensity is *vice versa*. The polarization behavior of a Raman band is represented by two symbols such as $\alpha\beta$, where the first and second letters refer to the polarization behaviors observed in the first and second crystal orientations and shown in Figs. 6 (A) and (B), respectively. For example, the polarization behavior

Table 3. Normal vibrations of 2,6-dimethyl- and tetramethylpyrazines

	netry		2,6-Dimeth	nylpyrazine	Tetramethylpyrazine		
$egin{array}{ccc} ext{species} \ ext{C}_{2 ext{v}} & ext{D}_{2 ext{h}} \ ext{D}_{2 ext{$		\mathbf{Mode}	$\stackrel{\textstyle \overbrace{\text{Obsd}}}{\tilde{\nu}/\text{cm}^{-1}}$	$\widetilde{v}/\mathrm{cm}^{-1}$	$\widetilde{v}/\mathrm{cm}^{-1}$	Calcd \tilde{v}/cm^-	
		v _{8a} Ring	1587	1583	1547	1543	
		v_2 ϕ -CH ₃ str.	1197	1210	1283	1277	
	a_{g}	v_1 Ring	709	706	715	734	
	5	v _{6a} Ring	556	548	530	531	
		v_{9a} CH ₃ bend. ^{a)}	1159	1147	296	279	
a ₁		v _{19a} Ring	1450	1460	1440	1439	
	1	v_{12} Ring	1020	1028	1220	1207	
	$\mathbf{b_{1u}}$	v_{13} ϕ -CH ₃ str. ^{a)}	3030	3034	680	666	
		v_{18a} CH ₃ bend.	420	425	310	328	
		v _{8b} Ring	1534	1540	1510	1522	
	1.	v_{7b} ϕ -CH ₃ str. ^{a)}	2975	2983	1050	1069	
	${ m b_{3g}}$	v_3 CH ₃ bend. ^{a)}	1254	1240	600	580	
h		v_{6b} Ring	568	559	478	465	
$\mathbf{b_2}$		v _{19b} Ring	1417	1415	1410	1404	
	$\mathbf{b_{zu}}$	v_{14} Ring	1305	1304	1330	1322	
	Diu	v_{20b} ϕ -CH ₃ str.	935	940	810	830	
		v ₁₅ CH ₃ bend.	285	289	270	282	
		v_4 Ring	675	673	750	749	
	$\mathbf{b_{cg}}$	v_5 CH ₃ wag. ^{a)}	747	752	275	263	
h		ϕ -CH $_3$ tor.				91	
$\mathbf{b_{1}}$		v _{16b} Ring	445	453	457	471	
	$\mathbf{b_{3u}}$	v_{11} CH ₃ wag.	198	196		191	
		ϕ -CH $_3$ tor.		160		130	
	•	v _{10a} CH ₃ wag.	220	224	380	381	
	$\mathbf{b_{1g}}$	$\phi ext{-CH}_3$ tor.	190	171		214	
$\mathbf{a_2}$		v _{16a} Ring	415	410	550	545	
	$a_{\mathbf{u}}$	v_{17a} CH ₃ wag. ^{a)}	955	940		268	
		ϕ -CH $_3$ tor.				79	
			ibrations of CH ₃	group			
		Antisym. C-H str.			2990	2968	
		Antisym. C-H str.			2930	2940	
	a_{g}	Sym. C-H str.	2926	2921	2725	2725	
	~g	CH ₃ degen. def.		105-	1440	1441	
		CH ₃ sym. def.	1378	1379	1383	1375	
a ₁		CH ₃ rock.	856	847	920	938	
. 1	$\mathbf{b_{1u}}$	Antisym. C-H str.			2985	2968	
r .	14	CH ₃ sym. def.			1360	1363	
	$\rm b_{3g}$	CH ₃ degen. def.			1430 1367	1442	
$\mathbf{b_2}$		CH ₃ sym. def.				1357	
		Antisym. C-H str.	2860	2863	2950	2968	
		Antisym. C-H str.	0015	9091	2925	2940	
	$\mathbf{b_{2u}}$	Sym. C-H str.	2915	2921	1460	1450	
		CH ₃ degen. def.	1486	1486	1460	1452	
		CH ₃ sym. def.	1350	1362	1378	1364	
		CH ₃ rock.			990	970	
$\mathbf{b_{1}}$		CH ₃ degen. def.	1480	1484			
\sim_1		CH ₃ rock.	880	884			

a) CH₃ is replaced by H in the case of 2,6-dimethylpyrazine.

Table 4.	POLARIZATION	BEHAVIORS	OF THE	Raman	AND	INFRARED	BANDS
	OF TETRAME	THYL- AND	2,6-рім	ETHYLPY	RAZI	NES	

			Tetramethylpyrazine						2,6-Dimethylpyrazine				zine
	of inertia kg m²						I _w 7.61	I _v 3.80	I _u 11.2	I _w 4.32		I _u 6.49	I _v 2.27
Symmetr	y species of vibration	a _g	b_{1g}	b_{2g}	b_{3g}	au	b_{1u}	b_{2u}	b_{3u}	a ₁	a_2	b ₁	b_2
Infrared	Vapor (Rotational band	d type)					В	A	С	В		C	A
	Crystal						Ia)	IIa)	IIIa)	IIa)		IIIa)	Ia)
Raman	Liquid	p	dp	dp	dp					р	dp	dp	dp
	Crystal		cc ab	aa cc	bb cc					αα ^{a)}	$etaeta^{\mathrm{a}}$	$lphaeta^{\mathrm{a}}$	

a) These polarization behaviors were experimentally determined by comparison with the band envelope in the infrared vapor spectrum.

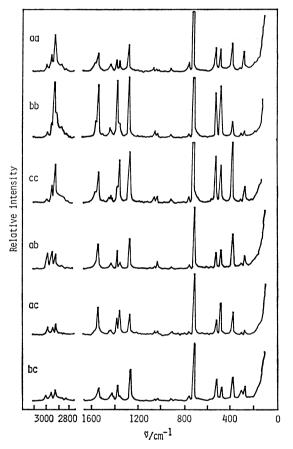


Fig. 5. Polarized Raman spectrum of the tetramethylpyrazine single crystal.

of the 1534 cm⁻¹ band is represented by $\alpha\beta$. The observed polarization behaviors of the non-totally symmetric Raman bands can be classified into three types $\alpha\alpha$, $\beta\beta$, and $\alpha\beta$ through which each Raman band can be experimentally assigned to a certain symmetry species.

The polarized infrared spectra of tetramethyl- and 2,6-dimethylpyrazines are shown in Figs. 7 and 8, respectively. The infrared crystal bands can be classified into three types I, II, and III based on their polarization behaviors. In the first type, the intensities of the // and \perp components of the bands are nearly equal to each other. In the second type, the intensity

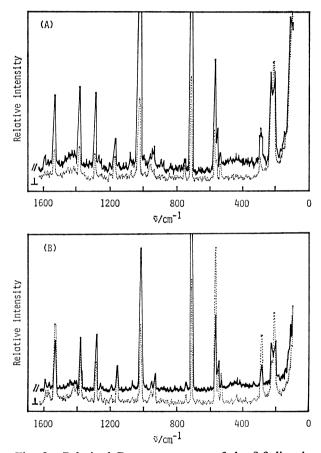


Fig. 6. Polarized Raman spectrum of the 2,6-dimethylpyrazine single crystal. For the polarization behaviors of the (A) and (B), see text.

of the // component is stronger than that of the \bot one, and in the third type, the intensity of the \bot component is much stronger than that of the // one.

Tetramethylpyrazine. The direction cosines between the crystal and molecular axes were calculated using the X-ray diffraction data given by Braam et al. 15) and the matrix elements of the derived polarizability tensor listed in Table 1 were evaluated. Squares of the calculated elements of the derived polarizability tensors, which are proportional to the Raman intensities, are given in Table 5 for the nontotally g symmetric vibrations. In this calculation,

Table 5. Squared values of the elements of the derived polarizability tensors for tetramethylpyrazine

	$\mathbf{b_{1g}}$	$\mathbf{b_{2g}}$	$\mathbf{b_{3g}}$
$(A_{aa})^2$	0.19	0.76	0.10
$(A_{ m bb})^2$	0.08	0.06	0.91
$(A_{ m cc})^2$	0.53	0.39	0.41
$(A_{ m ab})^2$	0.40	0.15	0.05
$(A_{ m ac})^2$	0.10	0.01	0.24
$(A_{ m be})^2$	0.10	0.23	0.00

values of the derived polarizability tensors of the free molecule, α'_{uv} , α'_{uw} , and α'_{vw} , are taken to be 1 in order to discuss the relative intensities of the Raman bands belonging to a certain symmetry species. It is expected from Table 5 that the b_{1g} vibrations appear strongly in the cc and ab spectra, the b_{2g} vibrations in the aa and cc spectra and the b_{3g} vibrations in the bb and cc spectra. These expected polarization behaviors of the Raman bands are given in Table 4.

 $a_{\rm g}$ Species: Strongly polarized Raman bands observed at 1547, 1383, 1283, 715, and 530 cm⁻¹ in the depolarization measurements were directly ascribed to the $a_{\rm g}$ vibrations and assigned to the v_{8a} , $v_{\rm CH_3}$ symmetric deformation, $v_2(\phi\text{-CH}_3\text{ stretching})$, v_1 , and v_{6a} vibrations, respectively based on the calculation. A very broad and almost depolarized Raman band observed around 300 cm⁻¹ in liquid phase splits into two bands at 305 and 296 cm⁻¹ in the single crystal Raman spectrum. The polarization behavior of the 305 cm⁻¹ band corresponds to the b_{3g} vibration, while that of the 296 cm⁻¹ band does not correspond to any nontotally symmetric vibrations. Therefore, the 296 cm⁻¹ band was assigned to the totally symmetric $v_{9a}(\text{CH}_3)$ bending) vibration.

 b_{3g} Species: A Raman band observed at 478 cm⁻¹ has strong intensity in the bb spectrum and medium intensity in the cc spectrum. Raman bands observed at 1510 and 1050 cm⁻¹ have rather weak intensities in the bb and cc spectra and extremely weak intensities in all other spectra. Table 4 indicates that the polarization behaviors of these bands are consistent with the b_{3g} vibration. Therefore, the 1510, 1050, and 478 cm⁻¹ bands were assigned to the ν_{8b} , ν_{7b} (ϕ -CH₃ stretching), and ν_{6b} vibrations of b_{3g} species, respectively. A very weak Raman band at 600 cm⁻¹ was observed only in the bb spectrum and thus this band was assigned to the ν_{3} (CH₃ bending) vibration.

 b_{1g} Species: A Raman band observed at 380 cm⁻¹ has strong intensity in the cc spectrum and medium intensity in the ab and as spectra. These polarization behaviors are consistent with the b_{1g} vibration. Thus the 380 cm⁻¹ band was assigned to the v_{10a} (CH₃ wagging) vibration.

 b_{2g} Species: A Raman band observed at 275 cm⁻¹ has stronger intensity in the aa and cc spectra compared with those in other spectra. A Raman band observed at 750 cm⁻¹ decreases its intensity in the order of aa>cc>bc≈ab>bb≈ac spectra. These polarization behaviors definitely indicate that the 275

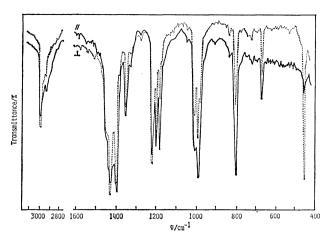


Fig. 7. Polarized infrared spectrum of the tetramethylpyrazine single crystal.

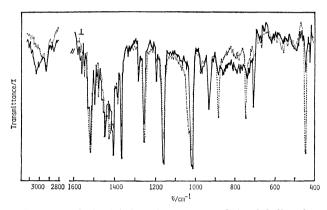


Fig. 8. Polarized infrared spectrum of the 2,6-dimethylpyrazine single crystal.

and 750 cm⁻¹ bands have to be assigned to the b_{2g} vibration and hence assigned to the v_5 (CH₃ wagging) and v_4 vibrations, respectively.

The assignment of a Raman band observed at 1367 cm⁻¹ is rather difficult. This band is depolarized in the molten Raman spectrum, while its polarization behavior in the crystal Raman spectra does not correspond to any non-totally symmetric vibrations. Therefore, this band was tentatively assigned to the superposition of the CH₃ symmetric deformation vibration of b_{3g} species and the overtone vibration of the $v_{13}(\phi\text{-CH}_3)$ stretching) vibration.

 b_{1u} Species: According to Table 4, the infrared b_{1u} band is expected to show the B type band envelope in vapor. Infrared bands observed at 1360 and 1220 cm⁻¹ showed the B band type in vapor and the type I polarization behavior in crystal. Since the band envelope and polarization behavior of the infrared band directly depend on the direction of the transition moment, it is expected that the infrared bands showing the type I polarization behavior in crystal should be assigned to the b_{1u} vibration. Strong infrared bands observed at 1440 and 1220 cm⁻¹, a medium intense band at 1360 cm⁻¹ and a weak band at 680 cm⁻¹ show the type I behavior in crystal and thus these bands were assigned to the ν_{19a} , ν_{12} , ν_{CH_3} symmetric deformation, and $\nu_{13}(\phi\text{-CH}_3)$ stretching) vibrations of

Table 6. Vibrational analyses of the Raman and infrared spectra of tetramethylpyrazine

		Raman				Infrared			
	Liquid		Crystal Pol.	Solu	tion	Crystal Pol.	Vapor type	Assignment	
v̄/cm ⁻¹	Int.	Pol.	1 01,	$\widetilde{v}/\widetilde{\mathrm{cm}^{-1}}$	Int.	101.	ty pc		
2990	m	р						antisym. C-H str. (a _g)	
		2.25		2985	w	I		antisym. C-H str. (b _{1u})	
				2950	\mathbf{m}	II		antisym. C-H str. (b _{2u})	
2935	\mathbf{sh}	$\mathbf{d}\mathbf{p}$	cc,ab					$2v_2 + v_{10a} \text{ (b}_{1g})$	
2930	S	\mathbf{p}		0005		77		antisym. C-H str. (a _g)	
2868				2925	m	II		antisym. C-H str. (b_{2u})	
2820	vw vw	p						$2v_2 + v_{9a} (a_g)$ $v_2 + v_{8a} (a_g)$	
2760	vw	p						$2CH_3$ sym. def. (a_g)	
2725	vw	p p						sym. C-H str. (a _g)	
2580	vw	p						$2\nu_2$ (a _g)	
1555	m	$\dot{ ext{d}} ext{p}$	aa,cc					$v_2 + v_5$ (b_{2g})	
1547	s	p	·					v_{8a} (a_g)	
1510	vw	${f dp}$	bb,cc					$v_{\rm 8b}~({ m b_{3g}})$	
			_	1460	\mathbf{sh}	II		CH ₃ degen. def. (b _{2u})	
1450	m		cc,ab					CH ₃ degen. def. (b _{1g})	
1440	m	p		1440	~	т		CH ₃ degen. def. (a _g)	
1420			hh aa	1440	S	I		v_{198} (b_{1u})	
1430	m		bb,cc	1410	vs	II		$\mathrm{CH_3}$ degen. def. $(\mathrm{b_{3g}})$ $v_{19\mathrm{b}}$ $(\mathrm{b_{2u}})$	
				1403	vs s	I		$v_{20b} + v_3 (b_{1u})$	
1383	s	n		1100	2	-		CH_3 sym. def. (a_g)	
1000	J	р		1378	\mathbf{sh}	II		CH_3 sym. def. (b_{2u})	
1367	m	dр						$(CH_3 \text{ sym. def. } (b_{3g}))$	
		-r						$(2\nu_{13} \ (a_g))$	
				1360	\mathbf{m}	I	В	CH ₃ sym. def. (b _{1u})	
				1330	vw	II		v_{14} (b_{2u})	
1283	S	\mathbf{p}						v_2 (ϕ -CH ₃ str.) (a_g)	
				1280	vw	Ι		$v_{6b} + v_{20b}$ (b _{2u})	
				1220	S	I	В	v_{12} (b_{1u})	
				1200	m	Ι		$v_{6a} + v_{13}$ (b _{1u})	
				1180	\mathbf{m}	II		CH_3 rock. $+v_{15}$ (b_{2u})	
1050	w	dp	bb,cc					$v_{7\mathrm{b}}~(\phi\text{-CH}_3~\mathrm{str.})~(\mathrm{b}_{3\mathrm{g}})$	
1030	w	p						$v_4 + v_5 (a_g)$	
				1015	\mathbf{m}	I		$v_1 + v_{18a}$ (b _{1u})	
				990	S	II		CH_3 rock. (b_{2u})	
				970	\mathbf{sh}	Ι		$v_{9a} + v_{13} \ (b_{1u})$	
920	vw	p						CH_3 rock. (a_g)	
				835	vw	Ι		$v_{6a} + v_{18a} \ (b_{1u})$	
				810	m	II	A	$\nu_{20\mathrm{b}}$ ($\phi\text{-CH}_3$ str.) ($\mathrm{b}_{2\mathrm{u}}$)	
750	w	$\mathbf{d}\mathbf{p}$	aa,cc					v_4 (b_{2g})	
				730	w	I		$v_5 + v_{16b}$ (b _{1u})	
715	vs	p						v_1 (a_g)	
		=		680	w	I		v_{13} (ϕ -CH ₃ str.) (b _{1u})	
600	vw	$\mathbf{d}\mathbf{p}$	bb					v_3 (CH ₃ bend.) (b _{3g})	
550a)	vw			545ª)	vw			v_{16a} (a _u)	
530	s	p						v_{6a} (a_{g})	
478	s	$\overline{\mathbf{d}}\mathbf{p}$	bb,cc					$v_{6\mathbf{b}}$ $(\mathbf{b_{3g}})$	
				457	\mathbf{m}	III	\mathbf{C}	$v_{16\mathrm{b}}$ ($\mathrm{b_{3u}}$)	
380	S	$\mathbf{d}\mathbf{p}$	cc,ab					v_{10a} (CH ₃ wag.) (b _{1g})	
		-		310b)	w			v_{18a} (CH ₃ bend.) (b _{1u})	
305	vw	$d\mathbf{p}$	bb,cc					$tor.+tor'.$ (b_{3g})	
296	vw	p ?	•					v_{9a} (CH ₃ bend.) (a _g)	
275	m	dp	aa,cc					v_5 (CH ₃ wag.) (b _{2g})	
		T.	,					· · · · · · · · · · · · · · · · · · ·	

a) Observed in crystal phase. b) Observed in liquid phase.

Table 7. Vibrational analyses of the Raman and infrared spectra of 2,6-dimethylpyrazine

Raman						Infrared		
Liquid			Crystal Pol.	Liq	uid	Crystal Pol,	Vapor type	Assignment
$\tilde{v}/\mathrm{cm}^{-1}$	Int.	Pol.	101.	$\widetilde{v}/\widetilde{\mathrm{cm^{-1}}}$	Int.	101,	type	
3030	w	p		3030	s	II		v_{13} (a ₁)
2975	vw	$\mathbf{d}\mathbf{p}$		2965	m		A	$v_{7\mathrm{b}}$ ($\mathrm{b_2}$)
2926	m	\mathbf{p}						sym. C-H str. (in CH ₃) (a ₁)
2915	vw			2920	\mathbf{m}	Ι		sym. C-H str. (in CH ₃) (b ₂)
2860	vw	$d\mathbf{p}$		2855	vw	I		antisym. C-H str. (in CH ₃) (b
1587	m	p		1584	vw	II		v_{8a} (a_1)
1575	w	p		1563	vw	II		$v_{12} + v_{6a}$ (a_1)
				1550	w	I		$v_3 + v_{18a}$ (b ₂)
1534	m	dp	αβ	1535	s	I	Α	$ u_{8\mathbf{b}} \ \ (\mathbf{b_2})$
				1486	w	I		CH ₃ degen. def. (b ₂)
				1480	w	III		CH ₃ degen. def. (b ₁)
1450	vw	p		1452	w	II		v_{19a} (a_1)
1417	w	dp	αβ	1420	\mathbf{m}	I	A	v_{19b} (b ₂)
		-	•	1418a)	w	III		$v_{6a} + CH_3$ rock. (b_1)
1405a)				1410	\mathbf{m}	II		$2v_1$ (a ₁)
				1383	w	III		$v_{9a} + CH_3$ wag. (b_1)
1378	m	p		1367	m	II	В	CH ₃ sym. def. (a ₁)
1350	vw	•	$\alpha \beta$	1359	w	Ι		CH ₃ sym. def. (b ₂)
1305	vw	$^{\mathrm{dp}}$	•	1305 ^{b)}	vw			v_{14} (b ₂)
1278	m	p		1280	w	II		$v_1 + v_{6a}$ (a_1)
1254	w	$^{1}_{ m dp}$	αβ	1255	vs	I	A	v_3 (b ₂)
1197	w	p	,	1197	vw	II		v_2 (ϕ -CH ₃ str.) (a ₁)
1159	m	p		1159	vs	II	В	v_{9a} (a_1)
1070	w	•	αα	1060ъ)	vw			$v_{10a} + CH_3$ rock. (a_2)
				1020	m	III		$v_{18a} + v_5$ (b ₁)
1020	S	p		1016	vs	II	В	v_{12} (a_1)
		-		970	w	I		$v_5 + v_{10a}$ (b ₂)
955	w	$\mathbf{d}\mathbf{p}$	αα					$v_{17a} (a_2)$
935	w	1	$\alpha \beta$	932	\mathbf{m}	I	A	$v_{20b} \ (\phi\text{-CH}_3 \ \text{str.}) \ (b_2)$
890	w	•	•					$2v_{16b}$ (a ₁)
880	w		$oldsymbol{eta}oldsymbol{eta}$	870	S	III	C	CH ₃ rock. (b ₁)
856	m	\mathbf{p}'						CH_3 rock. (a_1)
747	w	dp	$\beta\beta$	745	m	III		v_{5} ($\mathbf{b_{1}}$)
709	vs	p	- •	707	w	II		v_1 (a ₁)
675	w	dp						v_4 (b ₁)
568	m	dp	$\alpha \beta$	570b)	w			v_{6b} (b ₂)
556	s	p	•					v_{6a} (a_1)
535	w	dp	etaeta					$(\mathbf{b_1})$
500	vw	$^{1}_{ m dp}$						$v_{18a} + v_{10a} (a_2)$
445	vw	dp		444	vs	III	C	ν_{16b} (b ₁)
420	vw	•		420b)	w			v_{18a} (CH ₃ bend.) (a ₁)
415	vw	$^{\mathrm{dp}}$						v_{16a} (a_2)
325	vw	dp						
285	m	dp	αβ	280ь)	w			v_{15} (CH ₃ bend.) (b ₂)
220	m	dp	αα	225ы	w			v_{10a} (CH ₃ wag.) (a ₂)
198	S	dp	ββ					v_{11} (CH ₃ wag.) (b ₁)
190	${ m sh}$	dp	αα					ϕ -CH ₃ tor. (a ₂)

a) Observed in crystal phase. b) Observed in liquid phase.

 b_{1u} species, respectively. A weak infrared band found at $310~\rm cm^{-1}$ in liquid was tentatively assigned to the v_{18a} (CH₃ bending) vibration based on the calculation. b_{2u} Species: A medium intense infrared band observed at $810~\rm cm^{-1}$ showed the A band type in vapor.

From Table 4, this band was ascribed to the b_{2u} vibration. This band showed the type II polarization behavior in crystal. Therefore, the infrared bands at 1410, 1330, and 810 cm⁻¹ showing the type II character in crystal were assigned to the ν_{19b} , ν_{14} , and ν_{20b}

 $(\phi\text{-CH}_3 \text{ stretching})$ vibrations of b_{2u} species, respectively. A weak band observed at 270 cm⁻¹ in liquid was assigned to the ν_{15} (CH₃ bending) vibration based on the calculation.

 $b_{3\mathrm{u}}$ Species: As a medium intense bands observed at 457 cm⁻¹ showed the typical C band type in vapor, this band was definitely ascribed to the $b_{3\mathrm{u}}$ vibration and assigned to the $v_{16\mathrm{b}}$ vibration. The CH₃ wagging and ϕ -CH₃ torsional vibrations belonging to $b_{3\mathrm{u}}$ species were not detected in the infrared spectrum because of their low frequencies.

 $a_{\rm u}$ Species: Extremely weak infrared and Raman bands observed at 545 and 550 cm⁻¹, respectively, in crystal might be assigned to the ν_{16a} vibration of $a_{\rm u}$ species. These bands are considered to appear in the spectra by the crystal force distorsion.

2,6-Dimethylpyrazine. a_1 Species: Strong and polarized Raman bands observed at 3030, 1587, 1450, 1197, 1159, 1020, 709, and 556 cm⁻¹ in molten phase were straightforwardly assigned to the totally symmetric v_{13} , v_{8a} , v_{19a} , $v_{2}(\phi$ -CH₃ stretching), v_{9a} , v_{12} , v_{1} , and v_{6a} vibrations, respectively. The corresponding infrared bands showed the type II polarization in crystal and the B band type in vapor. A very weak Raman band at 420 cm⁻¹ was assigned to the totally symmetric v_{18a} (CH₃ bending) vibration based on the calculation.

 b_1 Species: A very strong infrared band at 444 cm⁻¹ showed the typical C band type in vapor and the type III polarization behavior in crystal. An infrared band at 745 cm⁻¹ showed the type III behavior and a depolarized Raman band at 747 cm⁻¹ showed the $\beta\beta$ polarization behavior in crystal. According to Table 4, the 444 and 745 cm⁻¹ bands should be assigned to the b_1 vibrations and thus assigned to the v_{16b} and v_5 vibrations, respectively. A Raman band at 198 cm⁻¹ showed the $\beta\beta$ character in crystal and thus this band was assigned to the v_{11} (CH₃ wagging) vibration of b_1 species. Depolarized Raman band at 675 cm⁻¹ was assigned to the v_4 vibration based on the calculation.

 b_2 Species: The infrared bands having the A band envelope in vapor showed the type I polarization behavior in crystal and the corresponding Raman band showed the $\alpha\beta$ polarization character in crystal. According to Table 4, the band showing these polarization behaviors could be assinged to the b_2 vibration. Infrared bands observed at 2965, 1535, 1420, 1255, and 932 cm⁻¹ showing the A band type in vapor were assigned to the ν_{7b} , ν_{8b} , ν_{19b} , ν_{3} , and $\nu_{20b}(\phi$ -CH₃ stretching) vibrations, respectively. Raman bands at 568 and 285 cm⁻¹ showed the $\alpha\beta$ polarization character in crystal and assigned to the ν_{6b} and ν_{15} (CH₃ bending) vibrations, respectively. A weak and depolarized Raman band at 1305 cm⁻¹ was assigned to the ν_{14} vibration based on the calculation.

 a_2 Species: Depolarized Raman bands observed at 955, 220, and 190 cm⁻¹ showed the $\alpha\alpha$ polarization character in crystal. These bands were assigned to the ν_{17a} , ν_{10s} (CH₃ wagging), and ϕ -CH₃ torsional vibrations of a_2 species, respectively, because the Raman bands showing the $\beta\beta$ and $\alpha\beta$ polarization behaviors in crystal were already assigned to the b_1 and b_2 vibra-

tions, respectively. A weak and depolarized Raman band at 415 cm⁻¹ was assigned to the v_{16a} vibration based on the calculation.

The characteristic vibrations for CH₃ group of tetramethyl- and 2,6-dimethylpyrazines were determined based on the observed polarization behaviors of the Raman and infrared bands as well as the normal coordinate calculation. Detailed vibrational analyses of the Raman and infrared spectra are given in Tables 6 and 7, and the normal vibrations are summarized in Table 3.

The normal coordinate calculation made for tetramethylpyrazine suggests that the v_1 , v_{12} , v_{6b} , v_{14} , and v_{16a} vibrations in this molecule couple with the $\phi\text{-CH}_3$ stretching (v_2) , ϕ -CH₃ stretching (v_{13}) , CH₃ bending (v_3) , ϕ -CH₃ stretching (v_{20b}) , and CH₃ wagging (v_{17a}) vibrations, respectively. Observed vibrational frequencies of the v_1 and v_{6b} vibrations are lower and the frequencies of the v_{12} , v_{14} , and v_{16a} vibrations are higher than those of the corresponding vibrations of pyrazine. These observation are consistent with the calculated results mentioned above. In 2,6-dimethylpyrazine the CH₃ group concerned with the ϕ -CH₃ stretching (v₁₃), CH₃ bending (v₃), and CH₃ wagging (v_{17a}) vibrations is replaced with the H atom and these vibrations do not couple with the v_{12} , v_{6b} , and v_{16a} vibrations, respectively. Therefore, the observed vibrational frequencies of v_{12} , v_{6b} , and v_{16a} vibrations are nearly the same as those of pyrazine, while the frequency of the v_1 vibration is lower and that of the

 v_{14} vibration is higher than those of pyrazine. We believe that the assignment of the normal vibrations given for tetramethyl- and 2,6-dimethylpyrazines are reliable and quite useful in the reasonable vibrational analyses of the phosphorescence spectra of these molecules.

References

- 1) R. C. Lord, A. J. Marson, and F. A. Miller, Spectrochim. Acta, 9, 113 (1957).
- 2) J. D. Simmons, K. K. Innes, and G. M. Begun, *J. Mol. Spectrosc.*, **14**, 190 (1964).
- 3) S. Califano, G. Adembri, and G. Sbrana, Spectrochim. Acta, 20, 385 (1964).
- 4) K. K. Innes, J. P. Byrne, and I. G. Ross, J. Mol. Spectrosc., 22, 125 (1967).
- 5) G. Sbrana, V. Schettino, and R. Righini, J. Chem. Phys., **59**, 2441 (1973).
- 6) J. Zarembowitch and L. Bokobza-Sebagh, Spectrochim. Acta, Part A, 32, 605 (1976).
- 7) I. Suzuki, Y. Udagawa, and M. Ito, Chem. Phys. Lett., 64, 333 (1979).
- 8) R. P. Oertel and D. V. Myhre, *Anal. Chem.*, **44**, 1589 (1972).
- 9) J. Bus, Th. J. Liefkens, and W. Schwaiger, Recl. Trav. Chim. Pays-Bas, 92, 123 (1973).
- 10) T. Watanabe, H. Shimada, and R. Shimada, Bull. Chem. Soc. Jpn., 55, 2564 (1982).
- 11) K. Niimori, K. Fukuda, N. Nishi, and M. Kinoshita, Symposium on the Molecular Structure and Molecular Electronic Structure, Tokyo, October 1974, Abstr. No. 20A10.
- 12) S. L. Madej, G. D. Gillispie, and E. C. Lim, *Chem. Phys.*, **32**, 1 (1978).
- 13) K. Miyake, S. Yamauchi, and N. Hirota, Symposium

on the Molecular Structure and Molecular Electronic Structure, Fukuoka, October 1980, Abstr. No. 4B19.

- 14) Y. Ishibashi, R. Shimada, and H. Shimada, Bull. Chem. Soc. Jpn., 55, 2765 (1982).
- 15) A. W. M. Braam, A. Eshuis, and A. Vos, Acta Crystallogr., Sect. B, 37, 730 (1981).
- 16) P. J. Wheatley, Acta Crystallogr., 10, 182 (1957).
 17) F. A. Keidel and S. H. Bauer, J. Chem. Phys., 25, 1218 (1956).
- 18) S. Kizuki, Y. Ishibashi, H. Shimada, and R. Shimada, Mem. Fac. Sci. Kyushu Univ., Ser. C, 13, 7 (1981).
- 19) D. H. Whiffen, Philos. Trans. R. Soc. London, Ser. A, **248**, 131 (1955).
- 20) D. T. Cromer, A. J. Ihde, and H. L. Ritter, J. Am. Chem. Soc., 73, 5587 (1951).
- 21) M. Suzuki, T. Yokoyama, and M. Ito, Spectrochim. Acta, Part A, 24, 1091 (1968).